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Protein Assembly by Orthogonal Chemical Ligation Methods
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Chemical synthesis harbors the potential to provide ready accessl8 h liberated FmocCys(Trt)GlutBu)SCHPPh, which was
to natural proteins as well as to create nonnatural ones. Indeed,isolated in 64% yield.
numerous proteins have already been assembled from synthetic RNase A(112-124) was synthesized as an N-terminal azide. The

peptidest? “Native chemical ligation*the coupling of a peptide
(or proteirt) containing a C-terminal thioester with another peptide
containing an N-terminal cysteine residdeas been especially
efficacious! Emerging strategies for protein assembly avoid the

n — 1 peptide was synthesized by using standard Fmoc-protection
and HATU activation on a hydroxyethylpolystyrene (PEGA) resin,
which has diverse solvent compatibility-Azido glyciné2®(residue
112) was used to cap the — 1 peptide by its activation with

need for a cysteine residue at the ligation junction. The Staudinger PyBOP, HOBt, and DIPEA in DMF. The identity ofd8H,C(O)-

ligation is one such strategy.
In our version of the Staudinger ligation, a peptide containing a

Asn(Trt)ProTyr{Bu)ValProValHis(Trt)Phe Asp(@®u)AlaSer(Bu)-
Val was confirmed by cleaving a small amount of theazido

C-terminal phosphinothioester reacts with a peptide containing an peptide from the resin with TFA and analyzing by MALDI mass

N-terminal azide to give an amide with no residual atoms, as in
Scheme £ The initial intermediate is an iminophosphorane,

spectrometry.
RNase A(116-111) and RNase A(112124) were coupled by

which rearranges to an amidophosphonium salt. Hydrolysis yields Staudinger ligation directly on the PEGA resin. Four equivalents
the amide and a phosphine oxide. Previously, we showed that thisof RNase A(116-111) in DMF/H,0 (10:1) was incubated with the

reaction can be used to form dipeptides in high isolated yield
(>90%) and with the retention odfi-carbon stereochemistp:c

resin over 12 h. After cleavage from the resin, side-chain depro-
tection, and HPLC purification, RNase A(11Q24) was isolated

Herein, we describe the first use of the Staudinger ligation to couple in 61% yield.
peptides on a solid support. We use the fragment thus produced to  RNase A(116-124) was synthesized again by this route, now

assemble a protein via native chemical ligatigihe synthesis of
a protein by this route expands the versatility of chemical
approaches to protein production.

Scheme 1
o 0
-N2(g) N+
peptide)J\S/\ PPh, —_— peptide)J\S/\ |IDPh2
_N\ .
+ peptide
N3—peptide iminophosphorane
X
) . peptide
/[CL peptide +:§ ];h
. peptid 2
peptide H peptide - Sf_

H,O
amidophosphonium salt

As a model protein, we chose ribonuclease A (RNasel2
amino acid residues), which was the first protein to succumb to
total synthesig. Herein, RNase A was assembled from three
fragments, which comprised residues109, 116-111, and 112
124. The route is shown in Scheme 2.

RNase A(116-111) was synthesized as a C-terminal phosphino-
thioester using a sulfonamide-linker (“safety-catch”) résithe
fully loaded resin was activated with iodoacetonitfielreatment
with an excess of diphenylphosphinomethanethfiih DMF for
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incorporating an NMR probe of protein structure. Specifically,
[13C',13C*,15N]proline® was inserted at position 114. The Asn313
Prol14 peptide bond resides in the d& ¢onformation in the
properly folded protein, but in a mixture of cis and trans conforma-
tions in peptide fragments.

RNase A(}109) was produced by biosynthesis as a C-terminal
thioester withN-methylmercaptoacetamide, as described previous-
ly.4¢11Both unlabeled and labeled RNase A(3124) contained
an N-terminal cysteine residue. Ligation of RNase A{D9) and
RNase A(116-124) in aqueous buffer, folding, and purification
yielded intact RNase A. Its molecular mass was verified by MALDI
mass spectrometry.

The ability to incorporate labeled amino acids at specific sites
is a distinct advantage of producing proteins by chemical synthe-
sis}2The route in Scheme 2 was used to incorpor&f@ [3C*,5N]-
Prol14 into RNase A, and a 1D HSQC NMR experiment was used
to probe for proper folding of the resulting protein. In Fmoc-
[13C',13C*,15N]ProOH, the carbamyl €N bond was a mixture of
cis and trans isomers (Figure 1). In contrast, the Asnr1l3
[13C’ 13C*,15N]Pro114 peptide bond in labeled RNase A was a single
species, consistent with this-® bond being only in the cis
conformation. Moreover, the chemical shift of tlheproton of
[13C',13C*,15N]Pro114 in the synthetic RNase A was identical to
that of unlabeled Pro114 in natural RNasé?A.

Enzymatic activity provides an extremely sensitive measure of
protein structuré® The enzymatic activity of the RNase A
synthesized as in Scheme R(Ky = 0.94 x 10’ M~1 s71) was
nearly equal to that of the wild-type enzyme produced by
recombinant DNA technologyk{/Ky = 1.1 x 10" M~ s71),11.14

Thus, the solid-phase assembly of peptides with the Staudinger
ligation has not only been realized, but used to assemble a functional
enzyme. This method for amide bond formation is orthogonal and
complementary to other ligation method3he enzyme created
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